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The most common form of cancer among women in both developed and developing
countries is breast cancer. The early detection and diagnosis of this disease is significant
because it may reduce the number of deaths caused by breast cancer and improve the
quality of life of those effected. Computer-aided detection (CADe) and computer-aided
diagnosis (CADx) methods have shown promise in recent years for aiding in the human
expert reading analysis and improving the accuracy and reproducibility of pathology
results. One significant application of CADe and CADx is for breast cancer screening using
mammograms. In image processing and machine learning research, relevant results have
been produced by sparse analysis methods to represent and recognize imaging patterns.
However, application of sparse analysis techniques to the biomedical field is challenging,
as the objects of interest may be obscured because of contrast limitations or background
tissues, and their appearance may change because of anatomical variability. We introduce
methods for label-specific and label-consistent dictionary learning to improve the
separation of benign breast masses from malignant breast masses in mammograms.
We integrated these approaches into our Spatially Localized Ensemble Sparse Analysis
(SLESA) methodology. We performed 10- and 30-fold cross validation (CV) experiments
on multiple mammography datasets to measure the classification performance of our
methodology and compared it to deep learning models and conventional sparse
representation. Results from these experiments show the potential of this methodology
for separation of malignant from benign masses as a part of a breast cancer
screening workflow.

Keywords: computer-aided diagnosis (CADx), sparse approximation, breast cancer screening, mass classification,
mammographic imaging
1 INTRODUCTION

The topic of this work is automated classification of breast masses into benign or malignant using
mammograms. The diagnosis of breast cancer is an impactful domain of research (1), therefore,
automated methods of detection and diagnosis of breast cancer have gained popularity in the past
few decades (2–6). Early diagnosis of breast cancer has been shown to reduce mortality related to
this disease and significantly improve the quality of life of those affected. To achieve early diagnosis,
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mammograms are used to aid in detecting breast cancer. Proper
detection and diagnosis of breast abnormalities requires the
experience and high levels of expertise of trained radiologists.
Computer-aided diagnosis would improve the reproducibility of
diagnosis states and reduce the time spent to thoroughly
diagnosis breast cancer.

The X-ray mammographic test is a commonly used method
for early prediction and diagnosis of breast cancer (7). Therefore,
the development of CADe and CADx techniques for breast
cancer using mammograms has attracted significant interest.
Among these techniques, conventional classification models use
specific procedures to craft features for representing and
classifying imaging pattern. Such conventional approaches are
introduced in (8–13). Features such as shape, texture, and
intensity were extracted in (9). Among the extracted features,
the genetic algorithm (GA) selected the most relevant features.
Additionally, feature extraction through Zernike moments have
been used because of their useful ability to well describe shape
characteristics (14). In recent years, feature extraction and
selection has been achieved through state-of-the-art techniques
that use neural networks (NN) (15). A popular group of NN
techniques use Convolutional Neural Nets (CNNs) for
classification. Key advances in both the design and application
of CNNs (16, 17) led to significant improvement in the state-of-
the-art object recognition on the Imagenet dataset. A common
training method used for CNNs is transfer learning; this
technique has been applied to medical imaging for
classification tasks (15, 18, 19). In (20), for example, pretrained
VGG16, ResNet50, and Inception v3 networks were customized
and applied to several mammographic datasets.

The concentration of this research is the diagnosis (CADx) of
breast cancer masses into benign or malignant states using sparse
representation and dictionary learning techniques. Sparse
representation has been applied in the areas of computer
vision, signal/image processing, and pattern recognition. The
objective of sparse representation methods is to use sparse linear
approximations of patterns, or atoms, from a dictionary of
signals to represent a specific signal . These sparse
approximations can then be used for applications such as
compression and denoising of signals/images, classification,
object recognition, and other areas. A common area of interest
in such techniques is dictionary learning. Dictionary learning
focuses on the methods for learning dictionaries in order to
obtain optimal representations according to the application
objective. Dictionary learning techniques have produced
impressive results in a variety of signal and image processing
applications (21–30). In more recent years, a widely studied area
has been convolutional sparse coding, and its relationship with
deep learning techniques (27, 30, 31).

Although there is substantial interest in the aforementioned
techniques, their application to the biomedical field remains
within limits to the straightforward utilization of sparse
representation classification (SRC), or learning of multiple
separate dictionaries. Hence motivation remains for the design
of methods that leverage the capabilities of dictionary learning and
sparse coding using joint discriminative-generative approaches.
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Here we propose the integration of discriminative dictionary
learning methods into our spatially localized ensemble sparse
analysis classification (SLESA) model. Our dictionary learning
techniques incorporate class label separation and label
consistency and we denote these variations as LS-SLESA and
LC-SLESA respectively. We train multiple dictionaries on the
same set of ROIs and fuse the residuals of multiple
approximations to obtain more robust class estimates than
those obtained by single dictionary learning as also supported
by (32). Our premise is that optimized spatially localized
dictionaries trained using label separation or label consistency
constraints, will improve the classification accuracy of our
spatially localized sparse analysis. We employ this system for
diagnosis of breast cancer in mammograms. We evaluate the
performance of our framework and compare it to straightforward
sparse representation classification (SRC), and the well-known
CNN architectures of Alexnet (16), Googlenet (17), Resnet50 (33),
and InceptionV3 (34), after applying transfer learning and data
augmentation techniques.
1.1 Sparse Analysis
In recent years, the research area of sparse representation of
signals has attracted considerable interest. The central focus of
sparse analysis is to optimize an objective function. The objective
function is comprised of a reconstruction error term and a
sparsity term. The reconstruction error term or the residual,
produces the measurement of the difference between the signal
reconstruction and the test signal. The sparsity term measures
the sparsity of the computed solution. The residual term may be
set to measure the test signal exactly or within a defined bound
of constraint.

In image classification tasks, the sparse representation of a
test image is used to assign that image to a class. Sparse
representation-based classification has two phases: coding and
classification. In the coding phase, an image or signal is
collaboratively coded with a dictionary of atoms given a
sparsity constraint. The classification of the image is performed
based on the coding coefficients and the dictionary. One of the
advantages of sparse representation in image classification tasks
is its ability to represent a high-dimensional image by few
representative samples.

The dictionary D consists of columns of signals, also called
atoms. The design of the dictionary could be simply predefined.
For example, a dictionary that consists of all training samples
from all classes is considered predefined. However, dictionaries
of this form may fail to represent test samples well, if the atoms
are inter-correlated, or they do not span the range of the image
content. Moreover, very large dictionaries increase the
coding complexity.

Sparse analysis solves the following optimization problem:
given signals in an Rd space, a dictionary D ∈ Rd×n of signals
partitioned by class, and a test signal y ∈Rd, sparse coding seeks
to find a coding vector x̂ ∈Rn. The test signal y is represented as a
linear combination of the dictionary atoms and a sparse code.
This mathematical optimization problem is expressed by
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bx = argmin
x
jjbx j0 subject to y = Dx :j (1)

Sparsity is represented by the ℓ0 norm, but may also be
approximated by the ℓ1 norm, or ℓp norms where p ∈(0,1).
Assuming that the signal contains noise, we can introduce ∈ as a
tolerance parameter and solve the following problem,

bx = argmin
x
jjbx j0 subject to j j y − Dxj j < ej (2)

Pursuit algorithms such as basis pursuit (BP) and orthogonal
matching pursuit (OMP) are often used to solve the sparse
coding problems defined in Equations 1 and 2. Basis pursuit is
a linear programming technique that seeks to find the sparsest L1
solution to to the mathematical optimization problem defined in
Equation 1. The orthogonal matching pursuit is considered a
greedy pursuit algorithm in that it updates the sparse solution
vector coefficients using previously updated solution vector
atoms. OMP is a more complex and computationally expensive
extension of the matching pursuit algorithm (MP), however, can
often lead to better sparse solutions.

Early sparse representation techniques such as SRC (35),
optimize an objective function of two terms, and design the
dictionary D with the original training images as dictionary
columns or atoms. In more recent works, we see an emphasize
on the design of the dictionary and task-specific optimization, of
which we discuss in the next section.

1.2 Dictionary Learning
As discussed before, the dictionary is a key component of the
optimization problem. Learning a dictionary from training data
has been an area of interest in recent years (25, 36). The goal of
such techniques is to construct dictionaries optimized for class
representation and separation. Previous works have shown that
dictionary learning may improve the performance of image
processing and recognition tasks (25). Dictionary learning
techniques can be divided into the following groups (23):
(i) probabilistic learning methods, (ii) clustering-based learning
methods, and (iii) construction methods.

The type, design, and dimensions of the dictionary have a
significant effect on the solutions of the sparse optimization
problem. The atoms are expected to be able to approximate the
variations of the specific image domain and have low correlation
with each other. Considering the dictionary dimensions, a
dictionary is considered overcomplete when the number of
signals within the dictionary (n) exceeds the dimension of the
signal to be represented (d), that is if d<n. Overcomplete
dictionaries are required to produce sparse representations of
signals (37).
2 METHODOLOGY

In this work, we introduce class label separation and class label
consistency into the localized dictionaries within our spatially
localized sparse analysis (SLESA) framework. We denote the
respective methods by LS-SLESA and LC-SLESA. Our SLESA
approach applies localized block decomposition that reduces the
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length of the feature vector and helps to build overcomplete
dictionaries. In the classification stage, we solve the sparse
representation problem for each block using orthogonal
matching pursuit (OMP), and fuse the individual block-wise
responses to determine the lesion category. LS-SLESA and LC-
SLESA aim to further improve the performance of our previous
work, SLESA, by finding task-specific dictionaries that utilize the
class labels of the training data. We consider two approaches: one
calculates separate dictionaries for benign and malignant breast
masses, and the other incorporates linear classification errors
into the optimization problem. Figure 1 outlines the main stages
of our methodology.

2.1 Spatially Localized Block
Decomposition
We divide each training image I into m×n px blocks that are
spatially ordered. Therefore, I = [B1, B2, …, BNB], where Bj

denotes a block of each training image and NB is the total
number blocks of an image. We construct dictionaries Dj, where
j = 1,2,…, NB, from the same position of the block Bj for all s
images of the training set:

Dj = ½Bj
1,B

j
2,⋯Bj

s� : (3)

Therefore, a number of NB block dictionaries are constructed,
each unique in the spatial information that they provide to
classify spatially localized image blocks.

2.2 Label Specific Spatially Localized
Ensemble Sparse Analysis
We introduce dictionary learning techniques to improve the
sparse approximation accuracy and generalizability. We learn a
separate dictionary for each type of mass and we then merge the
dictionaries to perform sparse coding and classification.

We employ the KSVD algorithm by (21) to learn the
dictionary. KSVD updates the atoms of the dictionary by
iteratively solving sparse coding problems that alternate
between residual and sparsity constraints. The optimized atom
in each iteration is computed by Singular Value Decomposition
(SVD). This method has been shown to converge to effective
solutions and has been widely applied for sparse representation.

After the block decomposition step, we learn NB
discriminative dictionaries using block-based label-separated
KSVD. We denote this approach by LS-SLESA.

argmin
Dj ,Aj

jjYj − Dj
mX

j
m j22 s : t :  
�� �� xjm�� ��j0 ≤ T , (4)

where Yj denotes the training block samples. We solve the above
problem for each class index m, and then concatenate the class-
specific dictionaries Dj

m to form the complete dictionary Dj for
the j-th block.

2.3 Label Consistent Spatially Localized
Ensemble Sparse Analysis
Another approach is to learn NB discriminative dictionaries
using the label consistent KSVD algorithm (denoted by LC-
KSVD). Sparse coding and sparse classification errors are added
December 2021 | Volume 11 | Article 725320
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to the optimization problem in order to compute a single
discriminative dictionary. We employ LC-KSVD to learn the
dictionaries Dj. The authors in (24) proposed two variants
named LC-KSVD1 and LC-KSVD2. In their work,
classification performance was consistently greater when the
LC-KSVD2 variant is used versus the LC-KSVD1 dictionary
learning approach. Thus, we employed the objective function of
LC-KSVD2 in our LC-SLESA approach. Thus, omitting the need
for ablation experiments on the effectiveness of the loss terms in
the LC-KSVD methods.

LC-KSVD2 adds a label consistency regularization term and a
joint classification error term to the objective function. The
optimization problem is:

arg  min
Dj ,Aj ,Wj ,xj

jjYj − DjXj j22+
�� �� Qj − AjXj

�� ��j22 +  jjHj −WjXj j22
��

s : t :  j xj�� ��j0 ≤ T :

(5)

Qj denotes the class-specific sparse codes for Yj, and Aj is a
linear transformation matrix. Wj symbolizes the parameters of
the linear classifier, andHj contains the class labels of the training
data Yj. T is the sparsity threshold. The term jjQj − AjXjjj22 is the
discriminative sparse code error that forces patterns from the
same class to have similar sparse codes. Qj is defined as Qj =
½qj1,…, qjN � for Nmany training samples where the discriminative
sparse codes for a sample, qji contains zero indices where the
training sample yji ∈ Yj and its corresponding dictionary do not
Frontiers in Oncology | www.frontiersin.org 4
share the same class label. The term jjHj −WjXjjj22 expresses the
classification error.

2.4 Ensemble Classification
In this stage of our method, we combine the individual spatially
localized decisions to classify the test samples. We find the
solution xj of the regularized noisy ℓ1-minimization problem,
for each test sample yj corresponding to the jth block:

x̂ j = argminjjxj j1 subject to j j Djx − yj
�� ��j2 ≤   e (6)

We propose ensemble learning techniques in a Bayesian
probabilistic setting to fuse classifier predictions. We propose a
decision function that applies majority voting to individual
hypotheses (BBMAP), and an ensemble of log-likelihood
scores (BBLL) computed from either the sparsity of the
solution (BBLL-S), or approximation residual (BBLL-R).

2.4.1 Maximum a Posteriori Decision Function
(BBMAP)
The class label of a test sample is determined by the MAP
estimate produced by NB block-based classifiers. The predicted
class label ŵ is

ŵ BBMAP = F BBMAP(x̂ )≐ argmax
i
 pr(wijx̂ ), (7)

where pr(wijx̂ ) is the posterior probability for class wi given x̂ .
FIGURE 1 | Main stages of the proposed methodology; block decomposition, dictionary learning, and ensemble classification. ROIs of benign and malignant image
samples are first divided into blocks. Block dictionaries are constructed for each block index overall the training samples. Each block of a test image is classified
using the corresponding block dictionary. If no dictionary learning is performed, our SLESA method is employed and an image is classified using an ensemble of its
block classifications. When dictionary learning is used, either through KSVD (our LS-SLESA method) or through LC-KSVD2 (our LC-SLESA method) the block
dictionaries are learned to produce more discriminative dictionaries. Individual spatially localized decisions are combined to classify test samples using ensemble
techniques BBMAP and BBLL-S or -R.
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2.4.2 Log Likelihood Sparsity-Based Decision
Function (BBLL-S)
This decision function first computes a log-likelihood score
based on the relative sparsity scores jjdm(x̂ j)jj1,  jjdn(x̂ j)jj1,
obtained from the sparse representation stage of each classifier

LLS(x̂ j) = −log 
dm(x̂ j)

�� ��
1

dn(x̂ j)k k1
 

≥ 0, x̂ j ∈  mth class

< 0, x̂ j ∈ nth class

(
(8)

We estimate the expectation of LLSj(x̂ ) that we denote by
ELLS over the individual classification scores obtained by (8)

ELLS(x̂ )≐
 
E LLS(x̂ j)
� �

=
1
NB

S
NB

j
LLS(x̂ j)

= − 1
NB S

NB

j
log dm(x̂

j)
�� ��

1−S
NB

j
log dn(x̂

j)
�� ��

1

� �
:

(9)

We apply a sigmoid function ς(.)to produce classification
scores in the range of [–1,1]. We employ a shift parameter tLLS to
account for classification bias,

F LLS(x̂ )≐ ς(ELLS(x̂ ) − tLLS) : (10)

The final decision is given by the sign of FLLS(x̂ ):

ŵ LLS(x̂ ) = Sgn F LLS(x̂ )f g : (11)

2.4.3 Log Likelihood Residual-Based Decision
Function (BBLL-R)
This function computes a log-likelihood score based on the
relative residual scores jjdm(x̂ j)jj1,  jjdn(x̂ j)jj1, obtained from
the sparse representation stage,

LLR(x̂ j) = −log 
Djdm(x̂ j) − yj

�� ��
2

Djdn(x̂ j) − yjk k2
 

≥ 0, x̂ j ∈  mth class

< 0, x̂ j ∈ nth class

(
(12)

We estimate the expectation of LLR(x̂ ), denoted by ELLR,
over all the individual classification scores obtained by (12),

ELLR(x̂ )≐E LLR(x̂ j)
� �

=
1
NBo

NB

j
LLR(x̂ j) (13)

We apply a sigmoid function ς(.)with a shift parameter tLLR
and a sign function, to determine the state of x̂ , symbolized by
ŵ LLR(x̂ ), as in (10, 11).
3 EXPERIMENTS AND DISCUSSION

We evaluated our method for classification of breast masses into
malignant or benign states on two digital mammographic
databases. Next, we describe our experiments and report
results produced by our approach. For comparison, we report
the results of variants to our proposed method including
straightforward sparse representation and multiple strategies
for dictionary learning in SLESA, LS-SLESA and LC-SLESA.
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These may serve as ablation experiments to evaluate the effect of
ensemble classification and the effect of dictionary learning on
the performance of our method. We have also validated the
performance of widely used convolutional neural networks (16,
17, 33, 34), after applying transfer learning, random resampling,
and extensive optimization.

3.1 Datasets
The training and testing data used in our experimentation
were obtained from the Mammographic Image Analysis
Society (MIAS) (2) and the Digital Database for Screening
Mammography (DDSM). The Mammographic Image Analysis
Society (MIAS) database is one of oldest and the most widely
used mammography databases. The resolution of the
mammograms is 200-micron pixel edge that is approximately
equivalent to 264.58 mm pixel size. The image size after clipping
or padding is 1024×1024 px. The MIAS dataset consists of 322
digitized mediolateral oblique (MLO) images (68 benign, 51
malignant, 203 normal). We selected mammograms containing
51 malignant and 66 benign masses in total, to evaluate
classification performance. The Digital Database for Screening
Mammography (DDSM) is a large public database including a
total of 10,480 images. CBIS-DDSM (Curated Breast Imaging
Subset of DDSM) is a carefully selected and updated subset
DDSM (Digital Database in for Screening Mammography). It
contains 753 calcification subjects and 891 mass subjects. In our
experiments we used the CC view (craniocaudal view) of benign
and malignant lesions of CBIS-DDSM (Curated Breast Imaging
Subset of DDSM). Thus, the number of malignant cases used in
our experiments was narrowed down to 296 malignant and 311
benign cases.

To prepare the data for the first stage of our method, block
decomposition, we first selected regions of interest (ROIs)
containing the masses. Our method reads-in two key values
from radiological readings, that is, the centroid and radius of
each mass. It determines a minimum bounding square ROI and
select the masses that satisfy a size criterion. In the first approach,
we ensured that the majority of the blocks cover the complete
mass area. The mass ROI sizes are required to be greater than, or
equal to a fixed ROI size. The qualifying masses are center-
cropped to generate the ROI data. In the second approach, we
selected the complete ROIs including background tissue using
the mass centroid and radius. Then we resampled all ROIs to a
fixed size, instead of applying a minimum size criterion. In MIAS
data we followed both approaches for ROI selection. In the CBIS-
DDSM data we followed the second approach. We performed
10- and 30-fold cross-validation on the ROIs to examine the
effect of the cross-validation fold size on performance.

3.2 Convolutional Neural Networks With
Transfer Learning
For comparison purposes, we implemented CNN classifiers
using the Alexnet (16), Googlenet (17), Resnet50 (33), and
InceptionV3 (34) architectures with transfer learning. All
networks were pre-trained on the Imagenet database that
contains 1.2 million natural images.
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Transfer learning was applied to each network in various
ways. To modify Alexnet to our data, we replaced the pre-trained
fully connected layers with three new fully connected layers. The
learning rates of the pre-trained layers were set to 0 in order to
keep the network weights fixed. We only trained the new fully
connected layers. For Googlenet, the learning rates of the bottom
10 layers were set to 0, and the top fully connected layer was
replaced with a new fully connected layer. We also assigned a
greater learning rate factor for the new layer than the pre-trained
layers. In Resnet50, we replaced the pre-trained fully connected
layers with three new fully connected layers. We set the learning
rates of the pre-trained layers to 0, in order to train only the new
fully connected layers. In InceptionV3, we replaced the top
classification layers with three new fully connected layers. We
set the learning rates of the pre-trained layers of InceptionV3 to
0, as we did in Alexnet and Resnet50.

To provide the networks with additional training examples,
we applied data resampling using randomly-centered patches
inside each ROI. Additionally, we applied data augmentation by
rotation, scaling, and horizontal and vertical flipping. Finally, we
used Bayesian optimization (38, 39) to tune the learning rate,
mini-batch size, and number of epochs.

Due to the ability of deep networks to learn information from
the edges of masses and not just the texture, we decided to test
our method on 256×256 px ROIs of all masses including the
background tissue in the MIAS database (66 benign and 51
malignant). Table 1 summarizes the results of our cross-
validation experiments. Googlenet yields the top ACC of
67.65% and the top AUC of 63.04% for 30-fold cross-validation.

When using DDSM data, we applied the same ROI selection
strategy with that of MIAS. The Alexnet architecture yields the
Frontiers in Oncology | www.frontiersin.org 6
top ACC of 69.59% and the top AUC of 73.04% using 30-fold
cross-validation (Table 2). We note the increase in classification
performance when using DDSM for training and testing. This is
expected, because CNNs require a large number of diverse
training samples to achieve good performance. DDSM is a
larger database than MIAS, therefore CNNs are able to learn
more relevant features for classification. Of note is that simpler
networks such as Alexnet and Googlenet, with smaller numbers
of trainable weights, produce more accurate classifications than
deeper networks such as InceptionV3. This is expected because
of the limited number of training samples in both datasets.

3.3 LS-SLESA and LC-SLESA
Next, we evaluated the performance of our block-based ensemble
classification method by 10- and 30-fold cross-validation. In the
MIAS section of our experiments, we present results using
minimum ROI size of 64×64 pixels, resulting in a dataset of 36
benign and 37 malignant masses. In Table 3, we report the
classification rates produced for multiple block sizes. When the
block size is equal to the ROI size, conventional SRC is
performed (35); these results are reported in the first row of
Table 3. We observe that ACC and AUC generally increase when
the number of folds increases, for the same ROI size. The top
ACC using 10-fold cross-validation is 72.86% for 8×8 block size
by SLESA, and for 64×64 block size by LS-SLESA with BBLL-S
decision function. The top AUC for 10-fold CV is 75.35% for 8×8
block size, produced by LS-SLESA. The best overall performance
is obtained for 30-fold cross validation. The top accuracy is 90%
for 16×16 and 8×8 block sizes by SLESA, and the largest area
under the curve is 93.10% for 8×8 block size by SLESA with
BBLL-S decision function. In 30-fold cross-validation, 2 or 3
TABLE 1 | Breast mass classification performance on MIAS data using convolutional neural network classifiers (ROI size: 256 × 256).

Method k-Fold CV ROI Size TPR (%) TNR (%) ACC (%) AUC (%)

Alexnet 10 256 × 256 56.86 72.55 64.71 62.19
30 256 × 256 58.82 64.71 61.77 60.29

Googlenet 10 256 × 256 64.71 58.82 61.77 57.86
30 256 × 256 66.67 68.63 67.65 63.04

Resnet50 10 256 × 256 60.78 62.75 61.76 57.32
30 256 × 256 44.12 55.88 53.6 56.8

InceptionV3 10 256 × 256 58.82 60.78 59.80 58.59
30 256 × 256 58.82 60.78 59.80 57.44
December 2
021 | Volume 11 | Artic
The top performances of 10- and 30-fold cross-validation are shown in bold.
TABLE 2 | Breast mass classification performance on DDSM data using convolutional neural network classifiers (ROI size: 256 × 256).

Method k-Fold CV ROI Size TPR (%) TNR (%) ACC (%) AUC (%)

Alexnet 10 256 × 256 67.57 65.88 66.72 69.70
30 256 × 256 72.64 66.55 69.59 73.04

Googlenet 10 256 × 256 72.64 59.46 66.05 69.55
30 256 × 256 66.89 64.19 65.5 69.43

Resnet50 10 256 × 256 56.42 75.68 66.05 70.35
30 256 × 256 60.81 73.31 67.06 71.34

InceptionV3 10 256 × 256 61.82 67.57 64.70 64.70
30 256 × 256 65.20 64.19 64.70 66.94
The top performances of 10- and 30-fold cross-validation are shown in bold.
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TABLE 3 | Breast mass classification performance on MIAS data using ensembles of block-based sparse classifiers with dictionary learning (ROI size: 64×64).

Method k-Fold Block
Size

SLESA SLESA SLESA SLESA LS-
SLESA

LS-
SLESA

LS-
SLESA

LS-
SLESA

LC-
SLESA

LC-
SLESA

LC-
SLESA

LC-
SLESA

CV TPR
(%)

TNR
(%)

ACC
(%)

AUC
(%)

TPR (%) TNR (%) ACC (%) AUC (%) TPR (%) TNR (%) ACC (%) AUC (%)

BBMAP-S 10 64×64 45.95 84.85 64.29 63.55 64.86 81.82 72.86 70.11 75.68 36.36 57.14 53.81
32×32 51.35 87.88 68.57 69.53 62.16 81.82 71.43 70.84 78.38 36.36 58.57 52.33
16×16 40.54 90.91 64.29 65.52 59.46 81.82 70.00 69.70 56.76 72.73 64.29 61.26
8×8 56.76 81.82 68.57 67.90 48.65 81.82 64.29 63.23 62.16 63.64 62.86 60.77
Mean 48.65 86.37 66.43 66.63 58.78 81.82 69.64 68.47 68.25 52.27 60.72 57.04
Std Dev 6.98 3.91 2.47 2.63 7.11 0.00 3.76 3.53 10.44 18.75 3.40 4.63

BBLL-S 10 64×64 64.86 72.73 68.57 70.35 72.97 72.73 72.86 71.33 64.86 66.67 65.71 66.42
32×32 70.27 63.64 67.14 70.02 62.16 81.82 71.43 69.70 70.27 60.61 65.71 68.80
16×16 59.46 84.85 71.43 74.37 59.46 81.82 70.00 69.94 64.86 75.76 70.00 71.42
8×8 72.97 72.73 72.86 71.58 59.46 81.82 70.00 75.35 51.35 81.82 65.71 64.78
Mean 66.89 73.49 70.00 71.58 63.51 79.55 71.07 71.58 62.84 71.21 66.79 67.85
Std Dev 5.99 8.70 2.61 1.97 6.43 4.55 1.37 2.61 8.07 9.42 2.14 2.89

BBMAP-S 30 64×64 22.58 93.10 56.67 52.28 64.52 55.17 60.00 56.62 70.97 62.07 66.67 63.52
32×32 9.88 100.00 53.33 48.50 48.39 75.86 61.67 59.40 100.00 63.33 63.33 57.17
16×16 61.29 65.52 63.33 59.96 45.16 82.76 63.33 60.73 75.86 71.67 71.67 69.30
8×8 38.71 96.55 66.67 61.96 54.84 86.21 70.00 66.07 74.19 55.17 65.00 60.85
Mean 33.07 88.79 60.00 55.68 53.23 75.00 63.75 60.71 80.26 63.06 66.67 62.71
Std Dev 22.25 15.77 6.09 6.35 8.54 13.90 4.38 3.97 13.32 6.77 3.60 5.11

BBLL-S 30 64×64 83.87 86.21 85.00 82.09 45.16 86.21 65.00 60.62 90.32 65.52 78.33 79.98
32×32 83.87 75.86 80.00 84.43 64.52 62.07 63.33 60.78 61.29 75.86 68.33 69.30
16×16 87.10 93.10 90.00 92.00 70.97 82.76 76.67 74.53 96.77 68.97 83.33 88.43
8×8 96.77 82.76 90.00 93.10 74.19 89.66 81.67 82.43 67.74 82.76 75.00 77.42
Mean 87.90 84.48 86.25 87.91 63.71 80.18 71.67 69.59 79.03 73.28 76.25 78.78
Std Dev 6.10 7.18 4.79 5.47 13.00 12.39 8.93 10.76 17.20 7.65 6.29 7.88
Frontiers in
 Oncology
 | www.fron
tiersin.org
 7
 D
ecember 2
021 | Volum
e 11 | Artic
The top performances of 10- and 30-fold cross-validation are shown in bold.
FIGURE 2 | ROC plots for 64 × 64, 32 × 32, 16 × 16, and 8 × 8 block sizes using the proposed block-based ensemble method on the MIAS dataset with BBLL
decision functions and 30-fold CV.
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images are tested in each fold. Additionally, in Table 3 we report
true positive rates (TPR) and true negative rates (TNR) for each
experiment. Generally, we observe higher true negative rates on
average than true positive rates, which is an indication that the
positive class, malignant, is more difficult to classify. Figure 2
displays the receiver operating curves (ROC) by SLESA, LS-
SLESA and LC-SLESA for 64,32,16 and 8px block lengths using
30-fold CV. The ROC graphs are consistent with the results in
Table 3. We compare BBLL-S ROC curves in Figure 2 among
the SLESA methods by applying DeLong’s statistical test for 30-
fold cross-validation on the MIAS dataset. These tests produced
statistically significant differences in AUCs at the level a = 0.05
between SLESA and LS-SLESA for 64,32, and 16px block lengths.
These tests determined as significant, AUC differences between
SLESA and LC-SLESA for 8px block length, and between LS-
SLESA and LC-SLESA for 64px block length. The results indicate
that SLESA produced better AUC values in 30-fold CV.

In the DDSM section of our experiments, we selected the
complete ROIs including background tissue using the centroid
and radius data. Then we resampled all ROIs to the fixed size of
128×128px. Table 4 contains a summary of the results. LS-
SLESA using 8×8 blocks and BBLL-R decision in 10-fold cross-
validation, produces the highest AUC and ACC at 65.34% and
63.17% respectively. Overall, label-specific and label-consistent
dictionary learning improves the ACC and AUC.
Frontiers in Oncology | www.frontiersin.org 8
Another general comparison can be made with the cases of
equal ROI and block sizes, for example when we use 64×64 block
size in MIAS experiments. These cases are equivalent to
conventional SRC, proposed by (35) and do not perform
ensemble classification. Hence, these are ablation tests for the
ensemble stage of our framework. The results indicate that our
SLESA techniques outperform conventional SRC in both datasets.
This is because block decomposition reduces the dimensionality of
the images and enables the creation of multiple overcomplete
dictionaries. An additional benefit is that we train multiple
dictionaries on the same set of ROIs and fuse the residuals of
multiple approximations to improve the classification accuracy.

Furthermore, Figure 3 compares the ACC and AUC values of
Alexnet, Googlenet, Resnet50 and InceptionV3 with SLESA, LS-
SLESA and LC-SLESA. We observe that sparse approximations
yield clearly better results on MIAS data, while CNNs with
transfer learning are a bit more accurate on DDSM data.

We highlight the top AUC performances of CNNs and sparse
methods per CV fold and dataset in Table 5. Our observations
here are consistent with those we made in Figure 3. Our SLESA
methods significantly outperform the best CNN performance on
the MIAS dataset. On the DDSM dataset, the top CNN
performances are slightly better than the SLESA counterparts in
10-fold CV, and the difference increases a bit in 30-fold CV. The
size of the dataset may play a role in this difference, as neural
TABLE 4 | Breast mass classification performance on DDSM data using ensembles of block-based sparse classifiers with dictionary learning (ROI size: 128×128).

Method k-Fold Block
Size

SLESA SLESA SLESA SLESA LS-SLESA LS-SLESA LS-SLESA LS-SLESA LC-SLESA LC-SLESA LC-SLESA LC-SLESA
CV TPR

(%)
TNR
(%)

ACC
(%)

AUC
(%)

TPR (%) TNR (%) ACC (%) AUC (%) TPR (%)) TNR (%) ACC (%) AUC (%)

BBMAP-R 10 128×128 55.97 49.83 52.83 53.12 69.62 43.65 56.33 56.93 57.00 54.07 55.50 55.82
64×64 40.61 63.52 52.33 51.90 49.15 64.17 56.83 56.70 48.81 66.45 57.83 57.62
32×32 54.61 55.70 55.17 55.25 59.04 62.22 60.67 61.00 60.07 54.07 57.00 57.21
16×16 62.12 50.81 56.33 56.71 75.43 36.81 55.67 55.92 57.68 57.00 57.33 57.49
8×8 60.07 50.81 55.33 55.84 62.12 56.68 59.33 60.05 51.19 66.45 59.00 58.97
Mean 54.68 54.13 54.40 54.56 63.07 52.71 57.77 58.12 54.95 59.61 57.33 57.42
Std Dev 8.42 5.73 1.73 1.99 10.08 11.96 2.13 2.25 4.74 6.36 1.27 1.12

BBLL-R 10 128×128 44.30 65.87 54.83 53.35 69.97 43.65 56.50 57.17 34.13 77.85 56.50 56.82
64×64 73.72 36.16 54.50 54.11 55.97 62.54 59.33 60.93 50.17 69.71 60.17 61.37
32×32 48.46 68.08 58.50 58.26 45.05 73.94 59.83 62.13 44.37 74.92 60.00 62.31
16×16 61.43 57.33 59.33 60.37 64.85 58.63 61.67 62.04 63.83 56.35 60.00 61.09
8×8 47.44 75.24 61.67 62.04 54.61 71.34 63.17 65.34 68.26 57.33 62.67 63.75
Mean 55.07 60.54 57.77 57.62 58.09 62.02 60.10 61.52 52.15 67.23 59.87 61.07
Std Dev 12.31 15.05 3.06 3.81 9.66 12.02 2.52 2.94 14.01 9.93 2.20 2.59

BBMAP-R 30 128×128 55.63 48.86 52.17 52.48 60.41 50.49 55.33 55.49 31.40 78.18 55.33 54.87
64×64 38.91 65.15 52.30 52.02 42.66 65.15 54.17 53.82 48.46 69.38 59.17 58.97
32×32 52.22 49.84 51.00 51.28 52.56 55.70 54.17 54.31 62.46 56.68 59.50 59.85
16×16 36.18 80.78 59.00 58.19 69.97 47.23 58.33 59.09 50.85 70.68 61.00 61.30
8×8 35.84 77.85 57.33 57.21 77.47 43.97 60.33 60.51 49.83 67.10 58.67 58.45
Mean 43.76 64.50 54.36 54.24 60.61 52.51 56.47 56.64 49.83 67.10 58.73 58.69
Std Dev 9.44 15.03 3.56 3.21 13.77 8.29 2.75 2.99 11.12 7.76 2.09 2.39

BBLL-R 30 128×128 62.80 43.97 53.17 52.18 18.43 92.83 56.50 54.57 32.08 80.78 57.00 56.75
64×64 27.65 80.78 54.80 52.30 59.73 57.33 58.50 58.30 47.44 71.34 59.67 61.73
32×32 83.96 22.48 52.50 51.69 37.88 82.08 60.50 62.64 66.55 57.34 61.83 62.32
16×16 56.31 64.17 60.33 61.43 48.12 74.27 61.50 61.93 51.53 66.78 59.33 61.40
8×8 39.25 79.48 59.83 61.82 62.45 60.91 61.67 65.24 63.14 57.65 60.83 62.00
Mean 53.99 58.18 56.13 55.88 45.32 73.48 59.73 60.54 52.15 66.78 59.73 60.84
Std Dev 21.75 24.88 3.71 5.25 17.94 14.73 2.20 4.16 13.73 9.86 1.82 2.31
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FIGURE 3 | ACC performance comparisons on MIAS (top row) and DDSM (bottom row) datasets using 10- and 30-fold cross-validation.
TABLE 5 | Top AUC performances of sparse analysis and deep learning methods on MIAS and DDSM datasets.

Dataset k-
Fold

Method Block
Size

TPR TNR ACC AUC

CV (%) (%) (%) (%)

MIAS 10 Alexnet N/A 56.86 72.55 64.71 62.19
SLESA 16 × 16 59.46 84.85 71.43 74.37
LS-SLESA (BBLL-S) 8 × 8 59.46 81.82 70.00 75.35
LC-SLESA (BBLL-S) 16 × 16 64.86 75.76 70.00 71.42

MIAS 30 Googlenet N/A 66.67 68.63 67.65 63.04
SLESA (BBLL-S) 8 × 8 96.77 82.76 90.00 93.10
LS-SLESA (BBLL-S) 8 × 8 74.19 89.66 81.67 82.43
LC-SLESA (BBLL-S) 16 × 16 96.77 68.97 83.33 88.43

DDSM 10 Resnet50 N/A 56.42 75.31 66.05 70.35
SLESA (BBLL-R) 8 × 8 47.44 75.24 61.67 62.04
LS-SLESA (BBLL-R) 8 × 8 54.61 71.34 63.17 65.34
LC-SLESA (BBLL-R) 8 × 8 68.26 57.33 62.67 63.75

DDSM 30 Alexnet N/A 72.64 66.55 69.59 73.04
SLESA (BBLL-R) 8 × 8 39.25 79.48 59.83 61.82
LS-SLESA (BBLL-R) 8 × 8 48.12 74.27 61.67 65.24
LC-SLESA (BBLL-R) 32 × 32 66.55 57.34 61.83 62.32
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networks learn best with large amounts of data. Additionally, the
complexity of finding sparse solution in our sparse analysis
methods increases as a larger amount of training samples are
learned. Overall, the results indicate that sparse approximations
produce good results on both datasets. In addition, they require
fewer training data than CNNs, hence can produce better results
than CNNs for smaller datasets.

We illustrate the effect of block localized learning on
classification by performing block experiments on both
datasets and comparing the classification rates per block. We
include example block ACC experiment results in Figures 4 and
5. In MIAS block ACC experimentation we notice that top block
ACC rates increase as the block size decreases, which confirms
our expectation. A comparison between the top individual block
ACCs and the ensemble BBLL rates reported in both Figures 4, 5
shows that BBLL is effectively combining block-based
predictions to produce equivalent or improved ACC rates. In
the block ACC experiments on DDSM (Figure 5), we observe
consistent patterns of block ACC rates between 10-fold and 30-
fold CV for all block sizes except for 64×64 px. While ensemble
classification has its limitations, such as increased complexity in
configuration and training, we see that ensembling reduces the
variance and bias of classification.
Frontiers in Oncology | www.frontiersin.org 10
In our next experiment, we explored the dictionaries learned
by LS-SLESA and LC-SLESA in terms of visual pattern
representation and inter-class separability. Figure 6 displays
examples of dictionaries produced by LS-SLESA and LC-
SLESA based on 16×16 blocks from 64×64 ROIs of the MIAS
database. We also display the training set for reference. These
blocks correspond to one of the Dj dictionaries defined in (3) and
computed by (4) and (5). They were spatially localized –7th in
lexicographical order out of a 4×4 grid. We see that the
dictionary atoms correspond to basic structural patterns of the
intensity distribution and texture of the masses.

In Figure 7 we display the 4-D t-SNE (40) clustering-based
embeddings of dictionaries produced under the same conditions
as Figure 6 by LS-SLESA and LC-SLESA. This figure displays
pair-wise feature scatterplots and single feature histograms
grouped by the mass state. We include a t-SNE clustering plot
of the training data without dictionary learning for comparison.
We observe greater separation between class dictionaries when
dictionary learning is applied to the training data. We also
computed the symmetric Kullback Leibler (KL) divergence
between the classes of benign and malignant samples in the
embedded spaces to measure the level of inter-class separation.
The greatest KL divergence of 4.7651 occurs in the third feature
FIGURE 4 | Classification accuracy by block for 32 × 32, 16 × 16, and 8 × 8 block experiments performed on the MIAS dataset for 10 fold CV (top row) and 30
fold CV (bottom row). The corresponding ensemble BBMAP-S and BBLL-S classification decision ACCs for 10-fold experiment examples are 70.00%, 70.00%,
70.00%, and 70.00%, 70.00%, 71.43% respectively for 32, 16, and 8 blocks. The corresponding ensemble BBMAP-S and BBLL-S classification decision ACCs for
30-fold experiment examples are 53.33%, 48.33%, 66.67%, and 80%, 90%, 90% respectively for 32, 16, and 8 blocks.
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embedding of the LS-SLESA block dictionary and the second
highest KL divergence, 4.7252, occurs in the first feature
embedding of the LC-SLESA block dictionary. The observed
separation constitutes the presence of similarities within class
specific samples and further illustrates the benefit of dictionary
learning on the training samples.

In both the MIAS and DDSM experiments we performed
parameter optimization on the sparse techniques using grid
search. In SLESA we used ∈ values of {0.001,0.01,0.1,0.5}. In
LS-SLESA we added to the search, sparsity levels of
Frontiers in Oncology | www.frontiersin.org 11
{1,5,10,30,60}, and dictionary sizes of {300,500} atoms for
DDSM. For the MIAS data, we used 60 atoms because of the
small sample size. In LC-SLESA we added to the search, (

ffiffiffiffiffi
a ,

pffiffiffi
b

p
) values of {(4e–4,2e–4), (4e–3,2e–3), (0.04,0.02), (0.4,0.2)}.
4 CONCLUSION

We introduced discriminative localized sparse representations to
classify breast masses as benign or malignant using
FIGURE 5 | Classification accuracy by block for 64 × 64, 32 × 32, 16 × 16, and 8 × 8 block experiments performed on the DDSM dataset for 10 fold CV (top row) and
30 fold CV (bottom row). The corresponding ensemble BBMAP-R and BBLL-R classification decision ACCs for 10-fold experiment examples are 57.33%, 53.67%,
56.17%, 54.67%, and 59.50%, 59.67%, 60.17%, 57.33% respectively for 64, 32, 16, and 8 blocks. The corresponding ensemble BBMAP-R and BBLL-R classification
decision ACCs for 30-fold experiment examples are 54.67%, 57.00%, 57.67%, 54.50% and 55.00%, 61.33%, 59.50%, 58.83% respectively for 64, 32, 16, 8 blocks.
FIGURE 6 | Dictionary comparison example for SLESA without dictionary learning (left), LS-SLESA (middle), and LC-SLESA (right).
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-SLESA (bottom). The greatest KL divergence for SLESA is 3.9353
ce for LC-SLESA is 4.7252 produced by the first feature.
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FIGURE 7 | t-SNE clustering plots with 4-D embedding of block dictionaries produced by SLESA (top-left), LS-SLESA (top-right), and LC
produced by the first feature. The greatest KL divergence for LS-SLESA is 4.7651 produced by the third feature. The greatest KL divergen

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Makrogiannis et al. Discriminative Localized Sparse Approximations
mammograms. LS-SLESA and LC-SLESA were designed to
incorporate class-based discriminant information into the
generative method of sparse representation using dictionary
learning. We incorporated these approaches into a spatially
localized ensemble learning methodology and extensively
evaluated their classification performance. As we observed
through our experimentation, these approaches produce sparse
approximations that improve the classification accuracy and
accomplish 93.1% area under the ROC using 30-fold cross-
validation. Our results indicate that this methodology may be
applicable for breast mass characterization in a breast cancer
screening workflow.
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